

RELATÓRIO DE ANÁLISE DAS HIPÓTESES

Estado da Paraíba

Paraíba Previdência PBPREV

THIAGO SILVEIRA - Atuário MIBA nº 2.756

Data de elaboração: 02/11/2025

SUMÁRIO

1. INTRODUÇÃO	2
2. PROBABILIDADES DE OCORRÊNCIA DE MORTE E INVALIDEZ	2
2.1. TESTES DE HIPÓTESES	2
2.2. TESTES DE ADERÊNCIA	3
2.2.1. QUI-QUADRADO	3
2.2.2. KOLMOGOROV-SMIRNOV (K-S)	4
2.2.3. DESVIO QUADRÁTICO MÉDIO (DQM)	5
2.3. ADERÊNCIA DAS HIPÓTESES	6
3. BASE DE DADOS PARA TESTE DE ADERENCIA	6
4. RESULTADOS DO TESTE DE ADERÊNCIA DAS TÁBUAS	7
4.1. MORTALIDADE GERAL	7
4.2. LIMITES MÍNIMOS DA PORTARIA 1467 PARA AS TÁBUAS BIOMÉTRICAS	10
4.3. CONCLUSÃO	11
5. TAXA DE JUROS REAL	11
5.1. METODOLOGIA	12
5.1.1. CÁLCULO DA TAXA INTERNA DE RETORNO (TIR)	12
5.2. ANÁLISE DA CONVERGÊNCIA	12
6. TAXA DE CRESCIMENTO DA REMUNERAÇÃO	13
6.1. TAXA REAL DO CRESCIMENTO DA REMUNERAÇÃO AO LONGO DA CARREIRA	13
6.2. RECOMENDAÇÃO PARA A TAXA DE CRESCIMENTO REAL DOS PROVENTOS POR PARIDAD	E13
7. TAXA DE ROTATIVIDADE	14
8. CONCLUSÃO	14
ANEXO A – TÁBUAS BIOMÉTRICAS TESTADAS	15
ANEXO B – TABELA DE DISTRIBUIÇÃO DO QUI-QUADRADO	19
APÊNDICE A – EVENTOS POR IDADE PARA CADA ANO	20
APÊNDICE B – GRÁFICOS OBSERVADOS X ESPERADOS	28

1. INTRODUÇÃO

A Portaria MTP nº 1467/2022, destaca que deverá ser elaborado Relatório de Análise das Hipóteses para comprovação de sua adequação às características da massa de participantes estudada.

É importante ressaltar que a análise biométrica contida neste relatório focou exclusivamente na massa de participantes inativos, uma vez que os dados disponíveis não permitiram a verificação da aderência das tábuas para a fase laborativa (participantes ativos).

Este relatório justifica-se pelo fato de que há a possibilidade de as hipóteses assumidas pelo atuário para eventos ocorridos com os participantes não se realizarem como previsto, acarretando problemas críticos de solvência no RPPS em datas futuras. Por isso é indispensável que as hipóteses sejam testadas e escolhidas corretamente, para assegurar a sustentabilidade do plano e garantir a todos os benefícios dos seus segurados no futuro.

Com esse estudo, a gestão da PBPREV terá uma noção mais ampla acerca do impacto que as hipóteses atuariais, nos moldes da Portaria MTP n° 1467/2022, tem em relação a massa de participantes avaliada dos RPPS, mostrando que estas são de suma importância nos seus cálculos atuariais.

2. PROBABILIDADES DE OCORRÊNCIA DE MORTE E INVALIDEZ

2.1. Testes de hipóteses

Os testes de hipóteses são processos de análise baseados em dados de uma amostra, que permitem decidir pela rejeição ou não da hipótese relacionada a um parâmetro dessa amostra, ou seja, são métodos que visam mensurar as afirmações sobre o valor da hipótese a ser testada (H_o), decidindo sua modificação com um grau de risco desconhecido, como se trata de uma decisão entre duas alternativas, se trata de um processo de decisão estatística.

A estrutura de um teste de hipótese consiste em:

- Formulação das hipóteses do teste de H₀ e H₁;
- Escolha do nível de significância α;
- Levantar o tamanho *n* da amostra e calcular a estimativa do parâmetro
- Escolha da distribuição amostral adequada;
- Cálculo da estatística de teste, valor crítico, valor observado na amostra ou valor calculado;
- Comparação da estatística de exceder com o valor crítico;
- Rejeitar a estatística de teste exceder o valor crítico ou não rejeitar H_i , caso contrário.

Em um teste de hipóteses, podem ocorrer dois tipos de erros, conforme a sequir:

Quadro 1 - Tipos de erros em um teste de hipóteses

	Não rejeitar $H_{\mathcal{O}}$	Rejeitar <i>H</i> o
H₀ verdadeira	(1 - α)	Erro do tipo I (α)
H₀ falsa	Erro do tipo II (β)	(1 - β)

Fonte: Elaborado pelo autor.

- Noutros termos, o Erro Tipo I, que rejeita H_0 , quando H_0 é verdadeira (também chamado de nível de significância e é representado por α);
- O Erro Tipo II, que não rejeita H_0 , quando H_0 é falsa (é representado por β).

2.2. Testes de Aderência

Teste de aderência é aquele que tem a finalidade de verificar se um conjunto de resultados práticos tem compatibilidade com um conjunto teórico, ou seja, seguem determinados valores esperados, através de métodos que tem como ideia primária a comparação entre os eventos observados e esperados.

Neste relatório são utilizados testes de hipóteses de método não paramétricos, como o Qui-Quadrado e Kolmogorov-Smirnov, além deles é utilizado o Desvio Quadrático Médio para a avaliação e seleção de modelos. Os métodos não paramétricos, são métodos com uma grande generalidade de aplicação, já que as hipóteses subjacentes a essa aplicação não têm restrições ou poucas restrições, como são métodos que funcionam bem para várias distribuições, levando em consideração que estes não fazem suposições sobre as distribuições de probabilidade, sendo estes chamados robustos e as estatísticas utilizadas recebem o nome de estatísticas firmes.

2.2.1. Qui-Quadrado

O teste de Qui-Quadrado tem este nome pelo fato de empregar uma variável estatística padronizada, expressa pela letra grega χ , elevada ao quadrado χ^2 . Tem uma estatística baseada no somatório do quadrado dos desvios das frequências, analisando a hipótese nula de não existir discrepância entre as frequências observadas e as frequências esperadas.

O valor do χ^2 calculado é dado pela seguinte formulação:

$$\chi^{2} = \sum_{i=1}^{n} \frac{(f_{o} - f_{t})^{2}}{f_{t}}$$

em que,

n = o número de classes;

 f_0 = frequências observadas na classe *i;*

 f_t = frequências teóricas na classe *i.*

As hipóteses do teste são as seguintes:

 H_0 : O χ^2 calculado é menor que o tabelado, tábua é aderente à massa de s participantes avaliada;

 H_i : O χ^2 calculado é maior que o tabelado, tábua não é aderente à massa de participantes avaliada.

O teste Qui-Quadrado avalia se as duas distribuições podem ser consideradas estatisticamente idênticas ou distintas, em função dos graus de liberdade ¹ e do nível de significância.

Ao realizar análises estatísticas utilizando o teste Qui-Quadrado em tabelas cruzadas, é fundamental levar em consideração alguns pontos essenciais. O Qui-Quadrado é uma ferramenta que nos ajuda a entender se existe uma relação significativa entre duas variáveis categóricas em uma tabela de contingência. Aqui estão algumas questões a serem observadas:

- ✓ <u>Sensibilidade ao Tamanho da Amostra²</u>: O Qui-Quadrado é sensível ao tamanho da amostra (geralmente superiores a 500). Quanto maior a amostra, maior a probabilidade de encontrar resultados estatisticamente significativos, mesmo para diferenças pequenas.
- ✓ <u>Sensibilidade à Distribuição nas Células</u>: O Qui-Quadrado é sensível à distribuição das frequências dentro das células da tabela. Quando uma ou mais células têm contagens muito baixas (geralmente menos de 5), a confiabilidade dos resultados é questionada. Por esse motivo, muitos programas estatísticos emitem avisos ou recomendações quando isso ocorre.
- ✓ <u>Combinação de Categorias</u>: Uma solução para lidar com células com contagens muito baixas é combinar categorias semelhantes, se possível, para criar uma tabela menor e evitar células com contagens muito baixas. Isso pode tornar os resultados estatísticos mais confiáveis e a interpretação mais segura.

Além dessas considerações, é importante lembrar que o Qui-Quadrado avalia apenas a existência de uma associação entre variáveis categóricas, não fornecendo informações sobre o tamanho ou direção dessa associação. Portanto, é recomendável complementar a análise do Qui-Quadrado com outras medidas estatísticas e gráficos exploratórios, se for o caso, para obter uma compreensão mais completa das relações entre as variáveis.

2.2.2.Kolmogorov-Smirnov (K-S)

O teste de aderência por Kolmogorov-Smirnov é realizado por meio da diferença entre a função de distribuição acumulada da amostra e função de distribuição acumulada teórica (estimado pelos modelos probabilísticos), essa diferença é calculada em módulo.

O valor do K-S calculado é dado pela seguinte formulação:

$$D_n = m \acute{a} x |F_0 - F_t|$$

onde,

 F_0 = representa a função de distribuição acumulada assumida para os dados;

 F_t = representa a função de distribuição acumulada teórica.

¹ Os graus de liberdade são calculados pelo número de classes divido pelas idades com expostos vivos não zerados menos um.

² Fonte: https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/using-chi-square-statistic-in-research/, acesso em 28/05/2024.

As hipóteses do teste são as seguintes:

 H_0 : As distribuições são semelhantes a tábua é aderente à massa de participantes analisada.

 H_{l} : As distribuições são distintas a tábua não é aderente à massa de participantes analisada.

O teste de K-S compreende em avaliar se os formatos de duas distribuições podem ser considerados equivalentes ou distintos, em função do nível de significância. Deste modo comparase a máxima diferença obtida no valor calculado com o desvio máximo tabelado, considerado que nível de significância adotado é um valor n que representa o tamanho da amostra, quando os valores calculados são menores ou iguais aos valores tabelados a distribuição é adequada, se o contrário ocorrer a distribuição não será adequada.

2.2.3.Desvio Quadrático Médio (DQM)

O Desvio Quadrático Médio (DQM) mede a variabilidade dos dados, o que permite avaliar a distância dos dados observados e os dados esperados.

O DQM é dado pela equação:

$$DQM_t = \left(\frac{q_t - q_d}{q_d}\right)^2$$

onde,

 q_t = Eventos observados na classe t;

 q_d = Eventos esperados na classe t.

O DQM não está diretamente relacionado à decisão de rejeitar ou não uma hipótese nula (H_0) . Em vez disso, o DQM é uma métrica que nos ajuda a avaliar a aderência de diferentes hipóteses ou modelos aos dados observados. A hipótese que apresenta o menor DQM é aquela que melhor se ajusta aos dados, pois tem os menores desvios quadráticos em relação aos valores reais.

O DQM é particularmente útil quando o teste Qui-Quadrado não é aplicável ou não fornece uma boa aderência a nenhuma das hipóteses. Quando o teste do Qui-Quadrado resulta em várias distribuições estatisticamente aderentes, o DQM pode ser empregado para classificar essas distribuições com base na qualidade do ajuste aos dados.

2.3. Aderência das Hipóteses

No quadro a seguir, são apresentados os testes de hipóteses utilizados juntamente com suas hipóteses estabelecidas de acordo com o objetivo do trabalho.

Quadro 2 - Avaliação e seleção de modelos e suas hipóteses

Teste	Hipóteses						
reste	Hipótese nula - HO	Hipótese alternativa – H1					
Qui-quadrado	A tábua é ADERENTE, porque o χ^2 calculado é menor	A tábua é NÃO ADERENTE, porque o χ^2 calculado é					
Q01-q0801800	que o Tabelado.	maior que o Tabelado.					
Kolmogorov-Smirnov	As distribuições são semelhantes, a tábua é	As distribuições são distintas, a tábua não é					
(K-S)	aderente à massa de participantes analisada.	aderente à massa de participantes analisada.					
Desvio quadrático médio (DQM)	As tábuas mais aderentes são aquelas que demonstra	am menor Desvio Quadrático Médio³.					

Fonte: Elaborado pelo autor.

Seguindo os parâmetros mínimos de prudência estabelecidos na Portaria MTP nº 1467/2022, as hipóteses atuariais testadas são as tábuas biométricas de mortalidade geral (para esse evento é observado a morte de um participante ativo do plano) e de entrada em invalidez (para esse evento é observado a concessão de aposentadoria por invalidez de um participante ativo do plano).

3. BASE DE DADOS PARA TESTE DE ADERENCIA

A PBPREV, coletou as informações de eventos ocorridos bem como as vidas expostas ao risco de morte apenas dos inativos referente aos exercícios de 2019 a 2024. É fundamental destacar que esta limitação aos dados da fase pós-laborativa (inativos) impossibilitou a realização de testes de aderência das tábuas biométricas para a fase laborativa (participantes ativos). Portanto, as conclusões sobre a adequação das tábuas biométricas neste relatório se referem estritamente à massa de inativos.

Devido a poucos registros observados de mortes, optou-se por agregar os eventos para os segurados válidos e inválidos. No entanto, devido à baixa qualidade cadastral dos registros observados para a entrada em invalidez, não serão demonstrados neste relatório.

Nas tabelas a seguir, são apontados os dados de mortes observadas e esperadas de acordo com cada tábua utilizada na comparação, em cada ano analisado.

Tabela 1 – Mortes observadas para o grupo do sexo feminino por ano

Ano	2019	2020	2021	2022	2023	2024
Expostos ao risco	6021	5967	5891	5930	6119	6272
Eventos Observados	308	291	343	309	251	217

Tabela 2 – Mortes observadas para o grupo do sexo masculino por ano

Ano	2019	2020	2021	2022	2023	2024
Expostos ao risco	25734	25670	25479	25258	25268	25150
Eventos Observados	865	623	683	661	519	512

 $^{^3}$ O Desvio Quadrático Médio (DQM), diferentemente do Qui-Quadrado, não possui uma hipótese não aderente, ele indica a hipótese mais aderente entre as tábuas que não rejeitaram a H_0 nos demais testes.

Tabela 3 - Mortes observadas (feminino + masculino)

Ano	2019	2020	2021	2022	2023	2024
Expostos ao risco	31755	31637	31370	31188	31387	31422
Eventos Observados	1173	914	1026	970	770	729

4. RESULTADOS DO TESTE DE ADERÊNCIA DAS TÁBUAS

Para meio de comparação, foram utilizadas outras tábuas biométricas, fornecidas pelo IBA⁴ e classificadas de acordo com sua finalidade. Levando em consideração que os testes foram feitos separadamente para os grupos do sexo feminino e masculino, nos casos de mortalidade foram usadas as tábuas por sexo, ou seja, as tábuas são diferentes de acordo com o grupo que estão sendo testadas. Por exemplo, IBGE 2023 (feminino) e IBGE 2023 (masculino).

Seguindo os mínimos estabelecidos no art. 36, I, a, da Portaria MTP n° 1467/2022, a tábua biométrica de mortalidade fornecida pelo Instituto Brasileiro de Geografia e Estatística (IBGE) que será testada neste trabalho é a tábua completa de mortalidade para o Brasil do ano de 2022⁵, no qual é observado que em cumprimento ao Decreto n° 3.266/1999⁶.

No quadro a seguir, é relacionado outras tábuas que serão testadas.

Quadro 3 - Classificação das tábuas biométricas utilizadas

Mortalidade (Válidos e inválidos)						
IBGE-2023						
AT-2000						
AT-2000 (Suavizada 10%)						
AT-83						
CSO - 2001						
IPEA-NM						
IPEA-NS						
BR-EMSsb-v.2021						
BR-EMSsb-v.2015						
BR-EMSsb-v.2010						

4.1. Mortalidade geral

Nas tabelas a seguir, são apontados os dados de mortes observadas e esperadas de acordo com cada tábua utilizada na comparação, em cada ano analisado.

Tabela 4 – Mortes esperadas para o grupo do sexo feminino por ano

TÁBUA	2019	2020	2021	2022	2023	2024
IBGE-2023	154,05	142,59	145,21	152,23	173,56	182,24
AT-2000	114,09	104,57	106,84	112,61	129,58	136,36
AT-2000 (Suavizada 10%)	102,66	94,07	96,12	101,33	116,63	122,74
AT-83	117,16	107,52	109,83	115,70	132,99	139,92
CSO - 2001	61,41	54,77	56,03	59,51	71,38	74,94
IPEA-NM	119,15	111,29	113,16	118,24	133,28	139,72
IPEA-NS	80,11	74,12	75,59	79,38	90,39	94,94
BR-EMSsb-v.2021	88,14	81,49	83,14	87,34	99,57	104,61
BR-EMSsb-v.2015	80,94	74,31	75,94	80,06	91,91	96,67
BR-EMSsb-v.2010	82,12	75,26	76,94	81,24	93,15	97,95

⁴ Disponível em: https://www.atuarios.org.br/tabuas-biometricas

⁵ Disponível em: https://www.gov.br/previdencia/pt-br/assuntos/rpps/atuaria/atuaria acesso em 28/05/2024.

⁶ Atribui competência e fixa a periodicidade para a publicação da tábua completa de mortalidade de que trata o § 8° do art. 29 da Lei no 8.213, de 24 de julho de 1991, com a redação dada pela Lei no 9.876, de 26 de novembro de 1999.

Tabela 5 – Mortes esperadas para o grupo do sexo masculino por ano

	-	-	-	-	-	-
TÁBUA	2019	2020	2021	2022	2023	2024
IBGE-2023	832,73	868,70	904,86	934,84	978,35	1.020,45
AT-2000	604,48	635,57	665,95	691,34	727,34	762,75
AT-2000 (Suavizada 10%)	822,64	857,70	892,72	921,95	963,35	1.003,20
AT-83	677,61	711,72	744,94	772,89	812,55	851,47
CSO - 2001	260,68	277,50	295,49	308,03	325,13	345,58
IPEA-NM	964,16	1.003,57	1.040,06	1.071,52	1.116,08	1.158,01
IPEA-NS	600,97	631,18	660,44	685,03	719,91	753,84
BR-EMSsb-v.2021	537,19	564,54	592,03	614,37	646,21	677,30
BR-EMSsb-v.2015	507,62	533,80	559,79	581,19	611,76	641,91
BR-EMSsb-v.2010	311,01	327,12	344,03	357,02	375,97	394,30

Tabela 6 - Mortes esperadas (feminino + masculino)

TÁBUA	2019	2020	2021	2022	2023	2024
IBGE-2023	986,78	1.011,29	1.050,07	1.087,07	1.151,91	1.202,69
AT-2000	718,56	740,15	772,79	803,95	856,92	899,11
AT-2000 (Suavizada 10%)	925,30	951,77	988,84	1.023,27	1.079,98	1.125,95
AT-83	794,77	819,24	854,77	888,59	945,54	991,39
CSO - 2001	322,08	332,27	351,52	367,54	396,52	420,53
IPEA-NM	1.083,31	1.114,86	1.153,23	1.189,76	1.249,36	1.297,73
IPEA-NS	681,09	705,30	736,03	764,40	810,30	848,77
BR-EMSsb-v.2021	625,33	646,03	675,17	701,72	745,78	781,91
BR-EMSsb-v.2015	588,56	608,11	635,73	661,25	703,66	738,58
BR-EMSsb-v.2010	393,13	402,38	420,97	438,25	469,12	492,24

Observa-se na tabela anterior que a tábua IBGE-2023 possui maior quantitativo de mortes esperados, se somar todos os anos. Por outro lado, a tábua AT-83 se mostrou mais próximo ao número de mortes observadas, também se somar todos os anos.

Ressalta-se que, os testes de hipóteses utilizados neste estudo consideram uma base de dados dos últimos seis anos a fim de observar os impactos de possíveis inconsistências. Devido ao tamanho da amostra para algumas idades ser superior a 500 e levando em consideração que qualquer pequena diferença aparecerá estatisticamente significativa, optou-se por realizá-los de maneira que os dados considerados correspondessem <u>a média dos valores observados e esperados</u> em cada idade de todos os anos analisado⁷.

Nas tabelas a seguir são demonstrados os resultados do teste Qui-Quadrado, para mortalidade dos participantes ativos, em cada tábua testada, considerando a consolidação das informações por sexo feminino e masculino, respectivamente.

Tabela 7 – Teste Qui-Quadrado para mortalidade de válidos

TÁBUA	χ² Calculado	χ² Tabelado	Graus de Liberdade	Resultado do Teste
IBGE-2023	40,6378	52,1923	37	Não há evidências para rejeitar HO
AT-2000	67,6114	52,1923	37	Rejeita HO
AT-2000 (Suavizada 10%)	38,0494	52,1923	37	Não há evidências para rejeitar HO
AT-83	41,2156	52,1923	37	Não há evidências para rejeitar HO
CSO - 2001	1445,1106	52,1923	37	Rejeita HO
IPEA-NM	129,8520	52,1923	37	Rejeita HO
IPEA-NS	89,0547	52,1923	37	Rejeita HO
BR-EMSsb-v.2021	115,7596	52,1923	37	Rejeita HO
BR-EMSsb-v.2015	160,8865	52,1923	37	Rejeita HO
BR-EMSsb-v.2010	630,3423	52,1923	37	Rejeita HO

⁷ Os dados e resultados abrangendo as idades dos testes realizados, encontram-se no apêndice A deste trabalho.

O teste Qui-Quadrado para mortalidade, foi realizado com 5% de nível de significância, assim pode-se dizer que há uma probabilidade de 95% de não ocorrer o erro do Tipo I.

Sendo assim, o teste não apresentou evidências para rejeitar H_0 as tábuas IBGE-2023, AT-2000 (Suavizada 10%) e AT-83, sendo que para as demais rejeitou a hipótese nula. Desta forma, poderia deduzir que há indícios que essas três tábuas são aderentes a massa de participantes analisada, levando em consideração que não rejeitou H_0 , destacando que a tábua AT-2000 (Suavizada 10%) apresenta o menor Qui-quadrado e poderia ser escolhida como a mais aderente, caso fosse realizado somente este teste.

Como o teste do Qui-Quadrado resulta em várias distribuições estatisticamente aderentes, os testes K-S e o DQM serão utilizados para classificá-las com base na qualidade do ajuste aos dados.

Na tabela a seguir, são explanados os resultados do teste K-S, para mortalidade, em cada tábua testada, considerando a consolidação das informações dos sexos feminino e masculino.

TÁBUA	D Calculado	D Crítico	p-valor	D crítico (tabelado)	Resultado do Teste
IBGE-2023	0,0093	0,0601	1,0000	0,0605	Não há evidências para rejeitar HO
AT-2000	0,0225	0,0648	0,9798	0,0653	Não há evidências para rejeitar HO
AT-2000 (Suavizada 10%)	0,0089	0,0609	1,0000	0,0614	Não há evidências para rejeitar HO
AT-83	0,0203	0,0632	0,9909	0,0636	Não há evidências para rejeitar HO
CSO-2001	0,0507	0,0824	0,4888	0,0832	Não há evidências para rejeitar HO
IPEA-NM	0,0171	0,0589	0,9978	0,0593	Não há evidências para rejeitar HO
IPEA-NS	0,0202	0,0658	0,9951	0,0663	Não há evidências para rejeitar HO
BR-EMSsb-v.2021	0,0222	0,0673	0,9880	0,0678	Não há evidências para rejeitar HO
BR-EMSsb-v.2015	0,0230	0,0685	0,9854	0,0690	Não há evidências para rejeitar HO
BR-EMSsb-v.2010	0,0248	0,0779	0,9919	0,0785	Não há evidências para rejeitar HO

Tabela 8 – Teste K-S para mortalidade

De acordo com as tabelas anteriores, o teste K-S foi realizado com 5% de nível de significância, no qual para ambos os grupos não rejeitou a hipótese nula para todas as tábuas testadas. Desta forma, pode-se deduzir que há indícios que todas as tábuas selecionadas são aderentes à massa de participantes analisada, ou seja, <u>os dados dos eventos observados são</u> semelhantes a tábuas testadas.

Considerando que pelo teste de K-S que todas não rejeitaram a HO. De acordo com estes resultados é explanado a impossibilidade de adotar-se esse teste de forma conclusiva e, portanto, o DQM será utilizado para classificá-las com base na qualidade do ajuste aos dados.

Na tabela a seguir, são apresentados os resultados do DQM para mortalidade em cada tábua testada, considerando a consolidação das informações por sexo feminino e masculino.

Tabela 9 - DQM para mortalidade de válidos

TÁBUA	DQM	ORDEM
IBGE-2023	0,1731	5
AT-2000	0,0826	2
AT-2000 (Suavizada 10%)	0,1448	4
AT-83	0,0564	1
CSO-2001	1,3139	10
IPEA-NM	0,5480	8
IPEA-NS	0,1149	3
BR-EMSsb-v.2021	0,1904	6
BR-EMSsb-v.2015	0,2556	7
BR-EMSsb-v.2010	0,8660	9

Como observado na tabela anterior, a tábua AT-83 seria a mais aderente entre as testadas, pois teria o menor desvio quadrático médio de todas testadas.

4.2. Limites mínimos da Portaria 1467 para as tábuas biométricas

O art. 36 da Portaria MTP nº1467/2022, estabelece as tábuas biométricas referencias como limites mínimos, quais são:

- para a taxa de sobrevivência de válidos e inválidos: tábua anual de mortalidade do IBGE, segregada obrigatoriamente por sexo e averiguado por meio da comparação entre a Expectativa de Vida (Ex) estimada por essa tábua e aquela gerada pelas tábuas utilizadas na avaliação atuarial, com base na idade média geral do grupo formado por beneficiários do RPPS.
- para a taxa de entrada em invalidez: tábua Álvaro Vindas, segregada será averiguado com a comparação das probabilidades de entrada em invalidez de segurados em atividade indicadas por essa tábua mínima com aquelas geradas pela tábua utilizada na avaliação atuarial, com base no somatório de i_x , de idade a idade, desde a idade média do grupo de segurados até a idade prevista na regra constitucional para aposentadoria voluntária do servidor do gênero masculino.

Por fim, as tabelas a seguir demonstram o resultado das expectativas de vida e de inválidos para os grupos analisados:

Tabela 10 – Expectativa de vida do grupo do sexo feminino, para a mortalidade geral

Tábua	Ex	Idade média	RESULTADO
IBGE-2023	15,19	72,93	Limite mínimo
AT-2000	16,93	72,93	Atende à Portaria
AT-2000 (Suavizada 10%)	17,69	72,93	Atende à Portaria
AT-83	16,79	72,93	Atende à Portaria
CSO-2001	20,40	72,93	Atende à Portaria
IPEA-NM	17,70	72,93	Atende à Portaria
IPEA-NS	20,19	72,93	Atende à Portaria
BR-EMSsb-v.2021	19,33	72,93	Atende à Portaria
BR-EMSsb-v.2015	19,60	72,93	Atende à Portaria
BR-EMSsb-v.2010	19,40	72,93	Atende à Portaria

Tabela 11 – Expectativa de vida do grupo do sexo masculino, para a mortalidade geral

Tábua	Ex	Idade média	RESULTADO
IBGE-2023	13,18	72,15	Limite mínimo
AT-2000	14,86	72,15	Atende à Portaria
AT-2000 (Suavizada 10%)	13,32	72,15	Atende à Portaria
AT-83	14,11	72,15	Atende à Portaria
CSO-2001	19,34	72,15	Atende à Portaria
IPEA-NM	12,55	72,15	Não atende à Portaria
IPEA-NS	15,12	72,15	Atende à Portaria
BR-EMSsb-v.2021	15,76	72,15	Atende à Portaria
BR-EMSsb-v.2015	16,07	72,15	Atende à Portaria
BR-EMSsb-v.2010	13,65	72,15	Atende à Portaria

Sendo assim, a tábua AT-83 além de apresentar a melhor aderência em termos de DQM, ela também atende ao limite mínimo de Expectativa de Vida exigido pela Portaria MTP nº 1467/2022, demonstrando adequação técnica e conformidade regulatória, o que a torna a opção mais indicada para utilização.

4.3. Conclusão

A análise <u>para a mortalidade geral</u>, realizada com base nos dados da massa de inativos, uma vez que não foram disponibilizadas informações para a fase laborativa, <u>aponta a tábua AT-83</u> como a recomendação técnica. Isso ocorre porque, passa pelo testes Qui-Quadrado e K-S, apresenta o menor DQM e também atende aos limites mínimos de Expectativa de Vida para ambos os sexos conforme a Portaria MTP nº 1467/2022, demonstrando adequação técnica e conformidade regulatória, o que a torna a opção mais indicada para utilização.

No que diz respeito à <u>entrada em invalidez</u>, a recomendação técnica é de manter <u>a tábua Álvaro Vindas</u>, que é o mínimo estabelecido pela Portaria MTP n° 1467/2022, uma vez que não foi possível realizar os testes para esse evento.

5. TAXA DE JUROS REAL

Corresponde ao retorno esperado das aplicações financeiras de todos os ativos garantidores do RPPS no horizonte de longo prazo que assegure o equilíbrio financeiro e atuarial do plano de benefícios, ou à taxa de juros parâmetro, conforme normas aplicáveis às avaliações atuariais dos RPPS. É utilizada para trazer os benefícios, contribuições, dentre outras informações a valores atuais no cálculo atuarial, sendo assim o resultado atuarial final relaciona-se diretamente com a taxa de juros. Quanto maior a expectativa da taxa de juros a ser alcançada, menor será o valor atual dos benefícios futuros, pois há dessa forma, a presunção de maior retorno nas aplicações dos recursos do Plano.

A análise da convergência entre a hipótese de taxa de juros e as rentabilidades obtidas pelos recursos garantidores do plano de benefícios do RPPS é fundamental para garantir a adequação das premissas atuariais e a sustentabilidade financeira do plano. De acordo com o Artigo 30 do Anexo VI da Portaria MTP nº 1.467/2022, o estudo técnico deve demonstrar a convergência da taxa de juros com as rentabilidades obtidas e projetadas.

5.1. Metodologia

Para realizar essa análise, utilizou-se do cálculo da Taxa Interna de Retorno (TIR) como principal métrica de avaliação.

5.1.1.Cálculo da Taxa Interna de Retorno (TIR)

A análise da convergência entre a hipótese de taxa de juros e as rentabilidades obtidas pelos recursos garantidores do plano de benefícios do RPPS é essencial para garantir a adequação das premissas atuariais e a sustentabilidade financeira do plano. Para fundamentar essa convergência, utilizamos a Taxa Interna de Retorno (TIR) como métrica principal.

A Taxa Interna de Retorno (TIR) é uma métrica frequentemente utilizada na análise de projetos de investimento, sendo definida como a taxa de desconto de um investimento que torna seu valor presente líquido nulo.

Consideramos o conceito de Taxa Interna de Retorno (TIR) para obter a rentabilidade média, pela qual os recursos garantidores dos benefícios constituídos serão remunerados durante o período de projeção do passivo, ponderada pelo fluxo de receitas de contribuições e pagamentos de benefícios do IMPREV.

Para atestar à convergência entre a taxa de juros real anual e a taxa de retorno real anual projetada para as aplicações dos recursos garantidores supramencionados, evoluímos o respectivo patrimônio de cobertura, para todo o período de existência do passivo constituído na modalidade de benefício definido, a fim de demonstrar a sua suficiência em relação aos compromissos atuariais do Plano de Aposentadoria do IMPREV.

A TIR foi calculada em 4,33%, baseada nos fluxos de caixa anuais de receitas e despesas para o Plano Previdenciário demonstrado na Reavaliação Atuarial elaborada em 23/02/2025, considerando os investimentos e desinvestimentos realizados ao longo do período analisado. Esta TIR reflete a rentabilidade média anual necessária para que os investimentos sejam sustentáveis e suficientes a longo prazo.

5.2. Análise da Convergência

A utilização da TIR como métrica para fundamentar a convergência da taxa de juros garante que as premissas atuariais sejam baseadas em dados empíricos e análises rigorosas. A hipótese de taxa de juros com base na taxa parâmetro é adequada e converge com as rentabilidades obtidas e projetadas pelos recursos garantidores do plano de benefícios do RPPS, conforme determinado pelo Artigo 30 do Anexo VI da Portaria MTP nº 1.467/2022. Recomendamos a revisão periódica das premissas atuariais para garantir a contínua adequação às condições de mercado e ao desempenho da carteira de investimentos.

Em conformidade com o art. 39 da Portaria MF nº 1467/2022, a taxa de juros real anual a ser utilizada como taxa de desconto para apuração do valor presente dos fluxos de benefícios e contribuições do RPPS será equivalente à taxa de juros parâmetro cujo ponto da Estrutura a Termo

de Taxa de Juros Média – ETTJ ⁸seja o mais próximo à duração do passivo do RPPS. Além disso, de acordo com §4°, a taxa de juros parâmetro deverá ser acrescida em 0,15 (quinze centésimos) a cada ano em que a rentabilidade da carteira de investimentos superar os juros reais da meta atuarial dos últimos 5 (cinco) anos, limitados ao total de 0,60 (sessenta centésimos).

Portanto, recomenda-se manter a taxa de juros real definida pela Portaria MTP n°1467/2022.

No entanto, a manutenção dessa taxa deve ser analisada em conformidade com as metas de rentabilidade estabelecidas nas Políticas de Investimentos. Por prudência, caso a meta de rentabilidade seja inferior à taxa parâmetro, sugere-se reduzir a taxa de juros atuarial para o mesmo patamar

6. TAXA DE CRESCIMENTO DA REMUNERAÇÃO

A hipótese de taxa de crescimento da remuneração tem por objetivo estimar o crescimento de caráter individual dos servidores ativos em sua respectiva carreira. Dita taxa de crescimento reflete, ao final, as regras de progressão e promoção da carreira de cada servidor, sendo que as regras de evolução salarial, em geral, dependem do tempo de permanência no cargo e de outras variáveis, como obtenção de títulos e méritos.

6.1. Taxa Real do crescimento da remuneração ao longo da carreira

Porém, da mesma forma das informações das tabuas, não foi possível coletar as informações relativos à estrutura de remuneração do município, inviabilizando a análise da taxa de crescimento salarial.

Desta forma, <u>recomenda-se a manutenção da taxa real de crescimento salarial pela taxa de 1,00% a.a.</u>, respeitando o mínimo estabelecido pela Portaria MTP nº 1467/2022.

6.2. Recomendação para a taxa de crescimento real dos proventos por paridade

Haja vista que, mesmo para os proventos por paridade, não há garantia de que haverá reajustes sistemáticos acima da inflação para as respectivas carreiras em atividade. A expectativa é que o salário da carreira correspondente ao benefício concedido tenha, ao menos, o reajuste pela inflação, resultando em um crescimento real nulo. Qualquer reajuste real das carreiras, que possa ser repassado aos proventos por paridade, passa a ser uma decisão política discricionária do ente federativo, salvo determinações federais específicas que garantam ganhos reais em situações pontuais.

Sendo assim, em alinhamento com a prudência atuarial e a ausência de garantia de ganhos reais contínuos, <u>recomenda-se a adoção de uma taxa de crescimento real de 0,00% ao ano para os proventos de aposentadoria e pensões por morte com paridade</u>. Esta premissa reflete a expectativa de que esses benefícios serão reajustados, no mínimo, pela inflação, preservando seu poder de compra, mas sem incorporar ganhos reais não garantidos por lei de forma sistemática.

⁸ Segundo o §1º do art. 39 "a ETTJ corresponde à média de 5 (cinco) anos das Estruturas a Termo de Taxa de Juros diárias baseadas nos títulos públicos federais indexados ao Índice de Preço ao Consumidor Amplo - IPCA, utilizando-se, para sua mensuração, a mesma metodologia aplicada ao regime de previdência complementar fechado."

7. TAXA DE ROTATIVIDADE

A hipótese de rotatividade estima a expectativa de demissão ou pedido de exoneração do cargo efetivo, antes de se desvincular do cargo por motivo de morte ou concessão de benefício permanente.

Porém, não recebemos informações relativas por esse tipo de saída. Portanto, <u>recomenda</u>se que a taxa de rotatividade seja mantida em 0% ao ano (nula).

8. CONCLUSÃO

Este relatório desempenhou seu objetivo ao analisar e examinar a adequabilidade das hipóteses atuariais biométricas relacionadas à massa de participantes inativos da PBPREV (com base nos dados dos últimos seis anos), não sendo possível a verificação para a fase laborativa devido à indisponibilidade de dados. Além disso, foram analisadas as hipóteses de crescimento real dos salários, taxa de rotatividade e convergência da taxa de juros.

Tais hipóteses são utilizadas nas avaliações atuariais do plano de benefícios administrado pela Paraíba Previdência - PBPREV. Assim, em síntese, seguem os resultados:

HIPOTESE	Atual	Proposta			
Mortalidade de Válidos (fase laborativa)	AT-2000	AT-2000			
Mortalidade de Válidos (fase pós-laborativa)	AT-2000	AT-83			
Mortalidade de Inválidos	MI 85	AT-83			
Entrada em invalidez	ALVARO VINDAS	ALVARO VINDAS			
Rotatividade	0,00% ao ano	0,00% ao ano			
Crescimento Salarial	Salários = 1,00% ao ano. Benefícios = 0,00% ao ano	Salários = 1,00% ao ano. Benefícios = 0,00% ao ano			
Taxa de Juros real	O correspondente a taxa de juros parâmetro (art. 39 da Portaria MTP nº 1467/2022)	Para os próximos exercícios: O correspondente a taxa de juros parâmetro (art. 39 da Portaria MTP nº 1467/2022), enquanto for menor ou igual meta de rentabilidade da Política de Investimentos.			

Tabela 12 - Hipóteses propostas

Por fim, destacamos que os entendimentos aqui contidos se fundamentam única e exclusivamente no enfoque técnico-atuarial no que tange ao atingimento do equilíbrio atuarial do plano administrado pela PBPREV.

Este é o nosso parecer.

Thiago SilveiraDiretor Técnico Atuarial
Atuário MIBA nº 2756

ANEXO A - TÁBUAS BIOMÉTRICAS TESTADAS

idade	IBGE	-2023	AT-2	2000		2000 ada 10%)	AT	AT-83		2001
(x)	FEM	MASC	FEM	MASC	(Suaviz	ada 10%) MASC	FEM	MASC	FEM	MASC
1	0,000726	0,000796	0,000755	0,000906	0,000680	0,000861	0,000778	0,001053	0,000280	0,000290
2	0,000567	0,000636	0,000392	0,000504	0,000353	0,000570	0,000402	0,000591	0,000190	0,000230
3	0,000446	0,000511	0,000290	0,000408	0,000261	0,000441	0,000298	0,000476	0,000120	0,000190
4	0,000356	0,000413	0,000232	0,000357	0,000209	0,000367	0,000240	0,000417	0,000120	0,000200
5	0,000291	0,000339	0,000189	0,000324	0,000171	0,000318	0,000194	0,000377	0,000130	0,000210
6	0,000245	0,000284	0,000156	0,000301	0,000141	0,000284	0,000160	0,000350	0,000130	0,000220
7	0,000216	0,000245	0,000131	0,000286	0,000118	0,000261	0,000134	0,000333	0,000130	0,000230
8	0,000198	0,000221	0,000131	0,000328	0,000118	0,000247	0,000134	0,000352	0,000140	0,000240
9	0,000191	0,000210	0,000134	0,000362	0,000121	0,000241	0,000136	0,000368	0,000140	0,000250
10	0,000193	0,000214	0,000140	0,000390	0,000126	0,000247	0,000141	0,000382	0,000150	0,000270
11	0,000202	0,000236	0,000148	0,000413	0,000133	0,000267	0,000147	0,000394	0,000150	0,000280
12	0,000220	0,000282	0,000158	0,000431	0,000142	0,000307	0,000155	0,000405	0,000180	0,000300
13	0,000246	0,000366	0,000170	0,000446	0,000152	0,000379	0,000165	0,000415	0,000200	0,000310
14	0,000280	0,000503	0,000183	0,000458	0,000164	0,000500	0,000175	0,000425	0,000220	0,000330
15	0,000320	0,000713	0,000197	0,000470	0,000177	0,000986	0,000188	0,000435	0,000240	0,000390
16	0,000365	0,001005	0,000212	0,000481	0,000190	0,001260	0,000201	0,000446	0,000250	0,000560
17	0,000410	0,001358	0,000228	0,000495	0,000204	0,001509	0,000214	0,000458	0,000260	0,000680
18	0,000453	0,001717	0,000244	0,000510	0,000219	0,001712	0,000229	0,000472	0,000250	0,000780
19	0,000489	0,002008	0,000260	0,000528	0,000234	0,001876	0,000244	0,000488	0,000240	0,000760
20	0,000520	0,002198	0,000277	0,000549	0,000250	0,002039	0,000260	0,000505	0,000220	0,000720
21	0,000546	0,002294	0,000294	0,000573	0,000265	0,002197	0,000276	0,000525	0,000200	0,000660
22	0,000571	0,002335	0,000312	0,000599	0,000281	0,002300	0,000293	0,000546	0,000180	0,000600
23	0,000596	0,002362	0,000330	0,000627	0,000298	0,002334	0,000311	0,000570	0,000160	0,000540
24	0,000624	0,002394	0,000349	0,000657	0,000314	0,002317	0,000330	0,000596	0,000150	0,000470
25	0,000654	0,002437	0,000367	0,000686	0,000331	0,002275	0,000349	0,000622	0,000140	0,000390
26	0,000687	0,002483	0,000385	0,000714	0,000347	0,002240	0,000368	0,000650	0,000140	0,000350
27	0,000721	0,002517	0,000403	0,000738	0,000362	0,002221	0,000387	0,000677	0,000150	0,000330
28	0,000756	0,002533	0,000419	0,000758	0,000376	0,002232	0,000405	0,000704	0,000160	0,000330
29	0,000792	0,002530	0,000435	0,000774	0,000389	0,002268	0,000423	0,000731	0,000170	0,000320
30	0,000830	0,002517	0,000450	0,000784	0,000402	0,002309	0,000441	0,000759	0,000190	0,000320
31	0,000870	0,002506	0,000463	0,000789	0,000414	0,002348	0,000460	0,000786	0,000210	0,000300
32	0,000913	0,002506	0,000476	0,000789	0,000425	0,002396	0,000479	0,000814	0,000220	0,000290
33	0,000962	0,002527	0,000488	0,000790	0,000436	0,002456	0,000499	0,000843	0,000230	0,000310
34	0,001017	0,002573	0,000500	0,000791	0,000449	0,002527	0,000521	0,000876	0,000230	0,000330
35	0,001081	0,002646	0,000515	0,000792	0,000463	0,002612	0,000545	0,000917	0,000230	0,000350
36	0,001155	0,002743	0,000534	0,000794	0,000481	0,002711	0,000574	0,000968	0,000230	0,000370
37	0,001241	0,002862	0,000558	0,000823	0,000504	0,002822	0,000607	0,001032	0,000240	0,000390
38	0,001339	0,003000	0,000590	0,000872	0,000532	0,002947	0,000646	0,001114	0,000250	0,000420
39	0,001449	0,003153	0,000630	0,000945	0,000567	0,003088	0,000691	0,001216	0,000270	0,000460
40	0,001570	0,003320	0,000677	0,001043	0,000609	0,003246	0,000742	0,001341	0,000300	0,000490
41	0,001699	0,003499	0,000732	0,001168	0,000658	0,003426	0,000801	0,001492	0,000340	0,000520
42	0,001833	0,003689	0,000796	0,001322	0,000715	0,003634	0,000867	0,001673	0,000380	0,000550
43	0,001971	0,003891	0,000868	0,001505	0,000781	0,003871	0,000942	0,001886	0,000440	0,000580
44	0,002112	0,004107	0,000950	0,001715	0,000855	0,004139	0,001026	0,002129	0,000500	0,000620
45	0,002258	0,004343	0,001043	0,001948	0,000939	0,004433	0,001122	0,002399	0,000570	0,000690
46	0,002413	0,004604	0,001148	0,002198	0,001035	0,004754	0,001231	0,002693	0,000640	0,000750
47	0,002583	0,004900	0,001267	0,002463	0,001141	0,005105	0,001356	0,003009	0,000730	0,000820
48	0,002773	0,005237	0,001400	0,002740	0,001261	0,005488	0,001499	0,003343	0,000820	0,000890
49	0,002986	0,005620	0,001548	0,003028	0,001393	0,005905	0,001657	0,003694	0,000940	0,000940
50	0,003224	0,006052	0,001710	0,003330	0,001538	0,006354	0,001830	0,004057	0,001070	0,001030
51	0,003488	0,006534	0,001888	0,003647	0,001695	0,006837	0,002016	0,004431	0,001220	0,001140
52	0,003776	0,007066	0,002079	0,003980	0,001864	0,007356	0,002215	0,004812	0,001390	0,001250
53	0,004087	0,007642	0,002286	0,004331	0,002047	0,007912	0,002426	0,005198	0,001580	0,001300
54	0,004421	0,008259	0,002507	0,004698	0,002244	0,008507	0,002650	0,005591	0,001780	0,001340
55	0,004776	0,008910	0,002746	0,005077	0,002457	0,009151	0,002891	0,005994	0,001980	0,001390
56	0,005154	0,009588	0,003003	0,005465	0,002689	0,009840	0,003151	0,006409	0,002180	0,001450
57	0,005560	0,010293	0,003280	0,005861	0,002942	0,010562	0,003432	0,006839	0,002380	0,001500
58	0,005999	0,011031	0,003578	0,006265	0,003218	0,011314	0,003739	0,007290	0,002560	0,001620
59	0,006486	0,011821	0,003907	0,006694	0,003523	0,012109	0,004081	0,007782	0,002740	0,001770
60	0,007036	0,012694	0,004277	0,007170	0,003863	0,012965	0,004467	0,008338	0,002920	0,001970
61	0,007673	0,013693	0,004699	0,007714	0,004242	0,013904	0,004908	0,008983	0,003100	0,002210
62	0,008414	0,014853	0,005181	0,008348	0,004668	0,014935	0,005413	0,009740	0,003310	0,002480
63	0,009270	0,016200	0,005732	0,009093	0,005144	0,016074	0,005990	0,010630	0,003530	0,002650
64	0,010233	0,017724	0,006347	0,009968	0,005671	0,017330	0,006633	0,011664	0,003730	0,002770
65	0,011267	0,019372	0,007017	0,010993	0,006250	0,018675	0,007336	0,012851	0,003940	0,002840
66	0,012325	0,021069	0,007734	0,012188	0,006878	0,020143	0,008090	0,014199	0,004160	0,002880
67	0,013352	0,022723	0,008491	0,013572	0,007555	0,021815	0,008888	0,015717	0,004420	0,003060
68	0,014323	0,024285	0,009288	0,015160	0,008287	0,023736	0,009731	0,017414	0,004700	0,003540

idade	IBGE	-2023	AT-:	2000		2000 ada 10%)	AT	-83	CSO-	2001
(x)	FEM	MASC	FEM	MASC	FEM	MASC	FEM	MASC	FEM	MASC
69	0,015268	0,025777	0,010163	0,016946	0,009102	0,025895	0,010653	0,019296	0,005010	0,003990
70	0,016265	0,027291	0,011165	0,018920	0,010034	0,028230	0,011697	0,021371	0,005350	0,004480
71	0,017455	0,029000	0,012339	0,021071	0,011117	0,030728	0,012905	0,023647	0,005730	0,005770
72	0,018978	0,031067	0,013734	0,023388	0,012386	0,033459	0,014319	0,026131	0,006160	0,007430
73	0,020963	0,033624	0,015391	0,025871	0,013871	0,036448	0,015980	0,028835	0,006640	0,008690
74	0,023496	0,036739	0,017326	0,028552	0,015592	0,039704	0,017909	0,031794	0,007170	0,010270
75	0,026568	0,040355	0,019551	0,031477	0,017564	0,043212	0,020127	0,035046	0,007750	0,012090
76	0,030118	0,044365	0,022075	0,034686	0,019805	0,046987	0,022654	0,038631	0,008520	0,012370
77	0,034003	0,048606	0,024910	0,038225	0,022328	0,051089	0,025509	0,042587	0,009590	0,012690
78	0,038103	0,052981	0,028074	0,042132	0,025158	0,055558	0,028717	0,046951	0,011030	0,013410
79	0,042428	0,057567	0,031612	0,046427	0,028341	0,060423	0,032328	0,051755	0,012950	0,014370
80	0,047105	0,062575	0,035580	0,051128	0,031933	0,064707	0,036395	0,057026	0,015440	0,015380
81	0,052476	0,068419	0,040030	0,056250	0,035985	0,069244	0,040975	0,062791	0,018440	0,016650
82	0,058911	0,075499	0,045017	0,061809	0,040552	0,074071	0,046121	0,069081	0,021990	0,018370
83	0.066683	0,084047	0,050600	0,067826	0,045690	0,079227	0,051889	0,075908	0,026260	0,021060
84	0,075886	0,094060	0,056865	0,074322	0,051456	0,084762	0,058336	0,083230	0,031260	0,025110
85	0,086127	0,104977	0,063907	0,081326	0,057913	0,090735	0,065518	0,090987	0,036740	0,030660
86	0,096741	0,115971	0,071815	0,088863	0,065119	0,097214	0,073493	0,099122	0,043030	0,037590
87	0,106874	0,126094	0,080682	0,096958	0,073136	0,104283	0,082318	0,107577	0,050160	0,045840
88	0,115820	0,134641	0,090557	0,105631	0,081991	0,112047	0,092017	0,116316	0,057750	0,055780
89	0,123619	0,141753	0,101307	0,114858	0,091577	0,120630	0,102491	0,125394	0,066150	0,068540
90	0,129643	0,149753	0,112759	0,124612	0,101758	0,130191	0,113605	0,134887	0,075410	0,085730
91	0,136463	0,158973	0,124733	0,134861	0,101736	0,140930	0,125227	0,144873	0,085320	0,128400
92	0,1344227	0,169679	0,137054	0,145575	0,1123349	0,153100	0,123227	0,155429	0,083320	0,128400
93	0,144227	0,182216	0,149552	0,156727	0,134486	0,167035	0,137222	0,166629	0,107200	0,161900
94	0,163398	0,197042	0,162079	0,168290	0,145689	0,183170	0,149462	0,178537	0,107200	0,213730
95	0,105396	0,197042	0,174492	0,180245	0,156846	0,202091	0,174228	0,178337	0,132240	0,228890
96	0,189402	0,214770	0,186647	0,192565	0,167841	0,202091	0,186535	0,191214	0,132240	0,259010
97	0,189402	0,262649	0,198403	0,192363	0,178563	0,251825	0,198646	0,219120	0,159890	0,239010
98	0,206087	0,262649	0,198403	0,205229	0,189604	0,285358	0,198646	0,219120	0,159890	0,274030
99	0,250621	0,293672	0,210337	0,218683	0,201557	0,327534	0,211102	0,251889	0,174920	0,269920
100	0,250621	0,337779	0,223027	0,233371	0,201557	0,327534	0,239215	0,251889	1,000000	1.000000
101	0,280963	0,465483	0,252985	0,249741	0,213013	0,453156	0,255953	0,270906	1,000000	1,000000
101	0,319295	0,465483	0,252985	0,268237	0,230565	0,453156	0,255953	0,292111	1,000000	1,000000
		.,		-,	.,			.,	,	,
103	0,433867	0,692560	0,292893	0,313391	0,270326	0,674234	0,297500	0,342377	1,000000	1,000000
104	0,521141	0,843296	0,318023	0,340940	0,295719	0,824382	0,323390	0,372086	1,000000	1,000000
105	0,637758	0,962046	0,347373	0,372398	0,325576	0,951547	0,353414	0,405278	1,000000	1,000000
106	0,783384	0,998190	0,381520	0,408210	0,360491	0,996961	0,388111	0,442277	1,000000	1,000000
107	0,924151	0,999997	0,421042	0,448823	0,401054	0,999990	0,428023	0,483406	1,000000	1,000000
108	0,992072	1,000000	0,466516	0,494681	0,447860	1,000000	0,473692	0,528989	1,000000	1,000000
109	0,999930	1,000000	0,518520	0,546231	0,501498	1,000000	0,525658	0,579351	1,000000	1,000000
110	1,000000	1,000000	0,577631	0,603917	0,562563	1,000000	0,584462	0,634814	1,000000	1,000000
111	-	-	-	-	-	-	-	-	-	-
112	-	-	-	-	-	-	-	-	-	-
113	-	-	-	-	-	-	-	-	-	-
114	-	-	-	-	-	-	-	-	-	-
115	-	-	-	-	-	-	-	-	-	-
116	-	-	-	-	-	-	-	-	-	-
117	-	-	-	-	-	-	-	-	-	-
118	-	-	-	-	-	-	-	-	-	-
119	-	-	-	-	-	-	-	-	-	-
120	-	-	-	-	-		-	-	-	-

idade	IPEA	A-NM	IPE	A-NS	BR-EMS	sb-v.2021	BR-EMSsb-v.2015		BR-EMS	b-v.2010
(x)	FEM	MASC	FEM	MASC	FEM	MASC	FEM	MASC	FEM	MASC
1	0,000000	0,000000	0,000000	0,000000	0,000192	0,000226	0,000153	0,000157	0,000380	0,001069
2	0,000000	0,000000	0,000000	0,000000	0,000155	0,000196	0,000116	0,000094	0,000200	0,000595
3	0,000000	0,000000	0,000000	0,000000	0,000134	0,000181	0,000079	0,000069	0,000130	0,000481
4	0,000000	0,000000	0,000000	0,000000	0,000121	0,000173	0,000058	0,000058	0,000100	0,000421
5	0,000000	0,000000	0,000000	0,000000	0,000113	0,000167	0,000049	0,000054	0,000080	0,000382
6	0,000000	0,000000	0,000000	0,000000	0,000109	0,000164	0,000047	0,000054	0,000070	0,000355
7 8	0,000000	0,000000	0,000000	0,000000	0,000109	0,000163 0,000163	0,000048	0,000056	0,000070	0,000337
9	0,000000	0,000000	0,000000	0,000000	0,000115	0,000166	0,000053	0,000058	0,000090	0,000387
10	0,000000	0,000000	0,000000	0,000000	0,000127	0,000173	0,000057	0,000067	0,000120	0,000460
11	0,000000	0,000000	0,000000	0,000000	0,000168	0,000186	0,000061	0,000074	0,000150	0,000487
12	0,000000	0,000000	0,000000	0,000000	0,000194	0,000210	0,000066	0,000083	0,000180	0,000509
13	0,000000	0,000000	0,000000	0,000000	0,000221	0,000249	0,000073	0,000097	0,000220	0,000526
14	0,000000	0,000000	0,000000	0,000000	0,000247	0,000306	0,000083	0,000118	0,000250	0,000540
15	0,000000	0,000000	0,000000	0,000000	0,000269	0,000379	0,000097	0,000149	0,000270	0,000555
16	0,000000	0,000000	0,000000	0,000000	0,000289	0,000465	0,000122	0,000191	0,000290	0,000568
17	0,000000	0,000000	0,000000	0,000000	0,000304	0,000557	0,000143	0,000280	0,000300	0,000584
18	0,000000	0,000000	0,000000	0,000000	0,000316	0,000646	0,000171	0,000374	0,000310	0,000602
19	0,000000	0,000000	0,000000	0,000000	0,000323	0,000727	0,000204	0,000491	0,000300	0,000623
20	0,000429	0,002939	0,000099	0,000165	0,000328	0,000793	0,000231	0,000605	0,000300	0,000648
21	0,000476	0,002921	0,000108	0,000181	0,000331	0,000844	0,000252	0,000707	0,000300	0,000676
22	0,000523	0,002888	0,000119	0,000199	0,000332	0,000877	0,000273 0,000287	0,000762 0,000782	0,000290	0,000707
24	0,000569	0,002847	0,000130	0,000219	0,000332	0,000892	0,000287	0,000782	0,000290	0,000740
25	0,000659	0,002759	0,000112	0,000266	0,000332	0,000886	0,000288	0,000754	0,000290	0,000809
26	0,000702	0,002721	0,000170	0,000292	0,000333	0,000870	0,000290	0,000737	0,000290	0,000843
27	0,000745	0,002691	0,000186	0,000322	0,000336	0,000850	0,000298	0,000730	0,000300	0,000871
28	0,000787	0,002671	0,000204	0,000354	0,000340	0,000828	0,000314	0,000726	0,000320	0,000894
29	0,000829	0,002664	0,000223	0,000390	0,000347	0,000809	0,000334	0,000718	0,000330	0,000913
30	0,000872	0,002671	0,000244	0,000429	0,000356	0,000794	0,000348	0,000721	0,000350	0,000925
31	0,000915	0,002694	0,000267	0,000472	0,000368	0,000786	0,000358	0,000734	0,000370	0,000931
32	0,000960	0,002735	0,000292	0,000520	0,000382	0,000784	0,000369	0,000758	0,000400	0,000931
33	0,001008	0,002793	0,000320	0,000572	0,000400	0,000791	0,000383	0,000794	0,000420	0,000932
34	0,001059	0,002871	0,000350	0,000630	0,000422	0,000807	0,000410	0,000840	0,000450	0,000933
35 36	0,001114	0,002968	0,000383	0,000693	0,000447	0,000831	0,000455	0,000880	0,000470	0,000935
37	0,001174	0,003087 0,003228	0,000420	0,000763	0,000476 0,000509	0,000865	0,000499	0,000920	0,000510	0,000937
38	0,001310	0,003321	0,000503	0,000924	0,000547	0,000963	0,000558	0,000988	0,000580	0,001029
39	0,001388	0,003579	0,000550	0,001016	0,000590	0,001027	0,000577	0,001029	0,000620	0,001115
40	0,001474	0,003792	0,000602	0,001119	0,000638	0,001102	0,000597	0,001088	0,000660	0,001231
41	0,001568	0,004031	0,000659	0,001231	0,000692	0,001187	0,000625	0,001156	0,000710	0,001378
42	0,001672	0,004299	0,000722	0,001355	0,000753	0,001285	0,000679	0,001244	0,000770	0,001560
43	0,001786	0,004596	0,000790	0,001491	0,000819	0,001394	0,000746	0,001351	0,000830	0,001776
44	0,001911	0,004925	0,000865	0,001640	0,000894	0,001516	0,000816	0,001480	0,000890	0,002024
45	0,002049	0,005287	0,000947	0,001805	0,000976	0,001651	0,000887	0,001603	0,000960	0,002299
46	0,002199	0,005684	0,001036	0,001987	0,001067	0,001802	0,000966	0,001725	0,001040	0,002594
47	0,002364	0,006120	0,001135	0,002186	0,001167	0,001968	0,001066	0,001846	0,001120	0,002906
48	0,002545	0,006596	0,001242	0,002405 0,002647	0,001279	0,002153 0,002356	0,001167	0,002001	0,001210 0,001310	0,003233
49 50	0,002743	0,007115	0,001360 0,001489	0,002647	0,001401	0,002580	0,001293	0,002179	0,001310	0,003573
51	0,002958	0,007680	0,001489	0,002912	0,001536	0,002828	0,001528	0,002387	0,001420	0,003929
52	0,003154	0,008964	0,001030	0,003203	0,001849	0,003100	0,001528	0,002023	0,001530	0,004596
53	0,003731	0,009689	0,001765	0,003320	0,002031	0,003400	0,001760	0,003217	0,001850	0,005111
54			+						0,002030	
-	0,004036	0,010475	0,002141	0,004268	0,002230	0,003729	0,001925	0,003554	0,002030	0,005544
55	0,004036 0,004369	0,010475 0,011327	0,002141 0,002344	0,004268 0,004696	0,002230 0,002449	0,003729 0,004092	0,001925 0,002111	0,003554	0,002230	0,005544
55 56										
_	0,004369	0,011327	0,002344	0,004696	0,002449	0,004092	0,002111	0,003907	0,002230	0,005991
56	0,004369 0,004731	0,011327 0,012249	0,002344 0,002567	0,004696 0,005166	0,002449 0,002691	0,004092 0,004492	0,002111 0,002330	0,003907 0,004298	0,002230 0,002450	0,005991 0,006449
56 57 58 59	0,004369 0,004731 0,005125 0,005554 0,006021	0,011327 0,012249 0,013246 0,014324 0,015487	0,002344 0,002567 0,002812 0,003080 0,003374	0,004696 0,005166 0,005683 0,006251 0,006876	0,002449 0,002691 0,002957 0,003250 0,003572	0,004092 0,004492 0,004930 0,005414 0,005945	0,002111 0,002330 0,002564 0,002800 0,003033	0,003907 0,004298 0,004716 0,005132 0,005551	0,002230 0,002450 0,002710 0,002990 0,003300	0,005991 0,006449 0,006916 0,007393 0,007899
56 57 58 59 60	0,004369 0,004731 0,005125 0,005554 0,006021 0,006529	0,011327 0,012249 0,013246 0,014324 0,015487 0,016743	0,002344 0,002567 0,002812 0,003080 0,003374 0,003696	0,004696 0,005166 0,005683 0,006251 0,006876 0,007563	0,002449 0,002691 0,002957 0,003250 0,003572 0,003927	0,004092 0,004492 0,004930 0,005414 0,005945 0,006530	0,002111 0,002330 0,002564 0,002800 0,003033 0,003301	0,003907 0,004298 0,004716 0,005132 0,005551 0,006001	0,002230 0,002450 0,002710 0,002990 0,003300 0,003650	0,005991 0,006449 0,006916 0,007393 0,007899 0,008461
56 57 58 59 60 61	0,004369 0,004731 0,005125 0,005554 0,006021 0,006529 0,007082	0,011327 0,012249 0,013246 0,014324 0,015487 0,016743 0,018097	0,002344 0,002567 0,002812 0,003080 0,003374 0,003696 0,004049	0,004696 0,005166 0,005683 0,006251 0,006876 0,007563 0,008318	0,002449 0,002691 0,002957 0,003250 0,003572 0,003927 0,004317	0,004092 0,004492 0,004930 0,005414 0,005945 0,006530 0,007172	0,002111 0,002330 0,002564 0,002800 0,003033 0,003301 0,003596	0,003907 0,004298 0,004716 0,005132 0,005551 0,006001 0,006504	0,002230 0,002450 0,002710 0,002990 0,003300 0,003650 0,004030	0,005991 0,006449 0,006916 0,007393 0,007899 0,008461 0,009103
56 57 58 59 60 61 62	0,004369 0,004731 0,005125 0,005554 0,006021 0,006529 0,007082 0,007684	0,011327 0,012249 0,013246 0,014324 0,015487 0,016743 0,018097 0,019556	0,002344 0,002567 0,002812 0,003080 0,003374 0,003696 0,004049 0,004437	0,004696 0,005166 0,005683 0,006251 0,006876 0,007563 0,008318 0,009148	0,002449 0,002691 0,002957 0,003250 0,003572 0,003927 0,004317 0,004747	0,004092 0,004492 0,004930 0,005414 0,005945 0,006530 0,007172 0,007879	0,002111 0,002330 0,002564 0,002800 0,003033 0,003301 0,003596 0,003914	0,003907 0,004298 0,004716 0,005132 0,005551 0,006001 0,006504 0,007097	0,002230 0,002450 0,002710 0,002990 0,003300 0,003650 0,004030 0,004450	0,005991 0,006449 0,006916 0,007393 0,007899 0,008461 0,009103 0,009851
56 57 58 59 60 61 62 63	0,004369 0,004731 0,005125 0,005554 0,006021 0,006529 0,007082 0,007684 0,008338	0,011327 0,012249 0,013246 0,014324 0,015487 0,016743 0,018097 0,019556 0,021127	0,002344 0,002567 0,002812 0,003080 0,003374 0,003696 0,004049 0,004437 0,004863	0,004696 0,005166 0,005683 0,006251 0,006876 0,007563 0,008318 0,009148 0,010059	0,002449 0,002691 0,002957 0,003250 0,003572 0,003927 0,004317 0,004747 0,005221	0,004092 0,004492 0,004930 0,005414 0,005945 0,006530 0,007172 0,007879 0,008656	0,002111 0,002330 0,002564 0,002800 0,003033 0,003301 0,003596 0,003914 0,004290	0,003907 0,004298 0,004716 0,005132 0,005551 0,006001 0,006504 0,007097 0,007802	0,002230 0,002450 0,002710 0,002990 0,003300 0,003650 0,004030 0,004450 0,004910	0,005991 0,006449 0,006916 0,007393 0,007899 0,008461 0,009103 0,009851 0,010730
56 57 58 59 60 61 62 63 64	0,004369 0,004731 0,005125 0,005554 0,006021 0,006529 0,007082 0,007684 0,008338 0,009051	0,011327 0,012249 0,013246 0,014324 0,015487 0,016743 0,018097 0,019556 0,021127 0,022817	0,002344 0,002567 0,002812 0,003080 0,003374 0,003696 0,004049 0,004437 0,004863 0,005329	0,004696 0,005166 0,005683 0,006251 0,006876 0,007563 0,008318 0,009148 0,010059 0,011061	0,002449 0,002691 0,002957 0,003250 0,003572 0,003927 0,004317 0,004747 0,005221 0,005741	0,004092 0,004492 0,004930 0,005414 0,005945 0,006530 0,007172 0,007879 0,008656 0,009512	0,002111 0,002330 0,002564 0,002800 0,003033 0,003301 0,003596 0,003914 0,004290 0,004714	0,003907 0,004298 0,004716 0,005132 0,005551 0,006001 0,006504 0,007097 0,007802 0,008671	0,002230 0,002450 0,002710 0,002990 0,003300 0,003650 0,004030 0,004450 0,004910 0,005410	0,005991 0,006449 0,006916 0,007393 0,007899 0,008461 0,009103 0,009851 0,010730 0,011762
56 57 58 59 60 61 62 63 64 65	0,004369 0,004731 0,005125 0,005554 0,006021 0,006529 0,007082 0,007684 0,008338 0,009051 0,009826	0,011327 0,012249 0,013246 0,014324 0,015487 0,016743 0,018097 0,019556 0,021127 0,022817 0,024633	0,002344 0,002567 0,002812 0,003080 0,003374 0,003696 0,004049 0,004437 0,004863 0,005329 0,005842	0,004696 0,005166 0,005683 0,006251 0,006876 0,007563 0,008318 0,009148 0,010059 0,011061 0,012161	0,002449 0,002691 0,002957 0,003250 0,003572 0,003927 0,004317 0,004747 0,005221 0,005741 0,006315	0,004092 0,004492 0,004930 0,005414 0,005945 0,006530 0,007172 0,007879 0,008656 0,009512 0,010452	0,002111 0,002330 0,002564 0,002800 0,003033 0,003301 0,003596 0,003914 0,004290 0,004714 0,005235	0,003907 0,004298 0,004716 0,005132 0,005551 0,006001 0,006504 0,007097 0,007802 0,008671 0,009583	0,002230 0,002450 0,002710 0,002990 0,003300 0,003650 0,004450 0,004450 0,005410 0,005930	0,005991 0,006449 0,006916 0,007393 0,007899 0,008461 0,009103 0,009851 0,010730 0,011762 0,012972
56 57 58 59 60 61 62 63 64 65 66	0,004369 0,004731 0,005125 0,005554 0,006021 0,006529 0,007082 0,007684 0,008338 0,009051 0,009826 0,010671	0,011327 0,012249 0,013246 0,014324 0,015487 0,016743 0,018097 0,019556 0,021127 0,022817 0,024633 0,026583	0,002344 0,002567 0,002812 0,003080 0,003374 0,003696 0,004049 0,004437 0,004863 0,005329 0,005842 0,006405	0,004696 0,005166 0,005683 0,006251 0,006876 0,007563 0,008318 0,010059 0,011061 0,012161 0,013369	0,002449 0,002691 0,002957 0,003250 0,003572 0,003927 0,004317 0,004747 0,005221 0,005741 0,006315 0,006947	0,004092 0,004492 0,004930 0,005414 0,005945 0,006530 0,007172 0,007879 0,008656 0,009512 0,010452 0,011486	0,002111 0,002330 0,002564 0,002800 0,003033 0,003301 0,003596 0,003914 0,004290 0,004714 0,005235 0,005786	0,003907 0,004298 0,004716 0,005132 0,005551 0,006001 0,006504 0,007097 0,007802 0,008671 0,009583 0,010535	0,002230 0,002450 0,002710 0,002990 0,003300 0,004650 0,004450 0,004910 0,005410 0,005930 0,006480	0,005991 0,006449 0,006916 0,007393 0,007899 0,008461 0,009103 0,010730 0,011762 0,012972 0,014382
56 57 58 59 60 61 62 63 64 65 66	0,004369 0,004731 0,005125 0,005554 0,006021 0,006529 0,007082 0,007684 0,008338 0,009051 0,009826 0,010671 0,011590	0,011327 0,012249 0,013246 0,014324 0,015487 0,016743 0,018097 0,019556 0,021127 0,022817 0,024633 0,026583 0,028675	0,002344 0,002567 0,002812 0,003080 0,003374 0,004049 0,004437 0,004863 0,005329 0,005842 0,006405 0,007023	0,004696 0,005166 0,005683 0,006251 0,006876 0,007563 0,008318 0,009148 0,010059 0,011061 0,012161 0,013369 0,014696	0,002449 0,002691 0,002957 0,003250 0,003572 0,003927 0,004317 0,004747 0,005221 0,005741 0,006315 0,006947 0,007643	0,004092 0,004492 0,004930 0,005414 0,005945 0,006530 0,007172 0,007879 0,008656 0,009512 0,010452 0,011486 0,012624	0,002111 0,002330 0,002564 0,002800 0,003033 0,003301 0,003596 0,003914 0,004290 0,004714 0,005235 0,005786 0,006393	0,003907 0,004298 0,004716 0,005132 0,005551 0,006001 0,006504 0,007097 0,007802 0,008671 0,009583 0,010535 0,011456	0,002230 0,002450 0,002710 0,002990 0,003300 0,004050 0,004450 0,005410 0,005930 0,006480 0,007100	0,005991 0,006449 0,006916 0,007393 0,007899 0,008461 0,009103 0,010730 0,011762 0,012972 0,014382 0,016015
56 57 58 59 60 61 62 63 64 65 66	0,004369 0,004731 0,005125 0,005554 0,006021 0,006529 0,007082 0,007684 0,008338 0,009051 0,009826 0,010671	0,011327 0,012249 0,013246 0,014324 0,015487 0,016743 0,018097 0,019556 0,021127 0,022817 0,024633 0,026583	0,002344 0,002567 0,002812 0,003080 0,003374 0,003696 0,004049 0,004437 0,004863 0,005329 0,005842 0,006405	0,004696 0,005166 0,005683 0,006251 0,006876 0,007563 0,008318 0,010059 0,011061 0,012161 0,013369	0,002449 0,002691 0,002957 0,003250 0,003572 0,003927 0,004317 0,004747 0,005221 0,005741 0,006315 0,006947	0,004092 0,004492 0,004930 0,005414 0,005945 0,006530 0,007172 0,007879 0,008656 0,009512 0,010452 0,011486	0,002111 0,002330 0,002564 0,002800 0,003033 0,003301 0,003596 0,003914 0,004290 0,004714 0,005235 0,005786	0,003907 0,004298 0,004716 0,005132 0,005551 0,006001 0,006504 0,007097 0,007802 0,008671 0,009583 0,010535	0,002230 0,002450 0,002710 0,002990 0,003300 0,004650 0,004450 0,004910 0,005410 0,005930 0,006480	0,005991 0,006449 0,006916 0,007393 0,007899 0,008461 0,009103 0,010730 0,011762 0,012972 0,014382

idade	IPE	A-NM	IPE	A-NS	BR-EMS:	sb-v.2021	BR-EMS:	sb-v.2015	BR-EMS	b-v.2010
(x)	FEM	MASC	FEM	MASC	FEM	MASC	FEM	MASC	FEM	MASC
71	0,016166	0,038626	0,010174	0,021427	0,011203	0,018430	0,009745	0,016676	0,010060	0,024864
72	0,017579	0,041551	0,011169	0,023536	0,012332	0,020264	0,010748	0,018700	0,011020	0,027598
73	0,019121	0,044666	0,012265	0,025846	0,013574	0,022282	0,011775	0,020875	0,012040	0,030528
74	0,020804	0,047979	0,013472	0,028378	0,014942	0,024505	0,012800	0,023290	0,013130	0,033691
75	0,022643	0,051498	0,014804	0,031150	0,016452	0,026951	0,013845	0,025784	0,014330	0,037143
76	0,024652	0,055229	0,016275	0,034185	0,018116	0,029636	0,015110	0,028667	0,015660	0,040929
77	0,026849	0,059177	0,017899	0,037504	0,019951	0,032597	0,016645	0,031721	0,017140	0,045106
78	0,029254	0,063349	0,019695	0,041132	0,021973	0,035857	0,018612	0,034842	0,018760	0,049716
79	0,031888	0,067748	0,021683	0,045097	0,024206	0,039445	0,021060	0,038234	0,020550	0,054784
80	0,034775	0,072376	0,023886	0,049425	0,026670	0,043396	0,024047	0,041785	0,022640	0,060331
81	0,037943	0,077236	0,026331	0,054147	0,029391	0,047744	0,027337	0,045799	0,025160	0,066375
82	0,041424	0,082328	0,029047	0,059294	0,032397	0,052535	0,030791	0,049948	0,028170	0,072935
83	0,045252	0,087650	0,032070	0,064898	0,035719	0,057815	0,034291	0,054402	0,031760	0,080035
84	0,049467	0,093198	0,035441	0,070996	0,039389	0,063624	0,038171	0,059700	0,035770	0,087700
85	0,054115	0,098968	0,039205	0,077622	0,043451	0,070028	0,042889	0,066509	0,040420	0,095965
86	0,059249	0,104953	0,043420	0,084815	0,047945	0,077088	0,049018	0,074419	0,045820	0,104858
87	0,064929	0,111142	0,048149	0,092612	0,052920	0,084870	0,056046	0,083960	0,052190	0,114410
88	0,071226	0,117525	0,053471	0,101052	0,058434	0,093446	0,063222	0,093439	0,059280	0,124645
89	0,078221	0,124089	0,059478	0,110176	0,064544	0,102908	0,070340	0,104970	0,067340	0,135532
90	0,086011	0,130818	0,066281	0,120021	0,071333	0,113357	0,077694	0,114359	0,076510	0,147042
91	0,094138	0,140625	0,073503	0,129114	0,078877	0,124888	0,085828	0,124729	0,087270	0,159136
92	0,102792	0,150863	0,081347	0,138741	0,087262	0,137624	0,094268	0,132558	0,099060	0,171779
93	0,111978	0,161513	0,089845	0,148907	0,096591	0,151705	0,104296	0,146618	0,112270	0,184938
94	0,121697	0,172560	0,099026	0,159615	0,106979	0,167236	0,115050	0,158572	0,128000	0,198582
95	0,131949	0,183983	0,108914	0,170860	0,118580	0,184405	0,126403	0,173747	0,146410	0,212689
96	0,142732	0,195759	0,119532	0,182635	0,131573	0,203374	0,137185	0,189559	0,168350	0,227227
97	0,154038	0,207861	0,130895	0,194922	0,146099	0,224368	0,147791	0,205371	0,186720	0,242170
98	0,165858	0,220263	0,143016	0,207701	0,162409	0,247589	0,159288	0,222068	0,204770	0,258046
99	0,178180	0,232934	0,155896	0,220940	0,180718	0,273277	0,171745	0,240123	0,224570	0,275378
100	0,190990	0,245842	0,169534	0,234602	0,201379	0,301686	0,181710	0,259646	0,246280	0,294694
101	0,204269	0,258955	0,183916	0,248641	0,224688	0,333145	0,198180	0,280756	0,270100	0,316520
102	0,217998	0,272240	0,199020	0,263002	0,251042	0,367863	0,219008	0,303583	0,296220	0,341380
103	0,232157	0,285663	0,214814	0,277622	0,280952	0,406268	0,242026	0,328265	0,324880	0,369801
104	0,246724	0,299191	0,231256	0,292431	0,315007	0,448631	0,267464	0,354954	0,356320	0,402309
105	0,261674	0,312792	0,248292	0,307351	0,353894	0,495199	0,295574	0,383813	0,390800	0,439430
106	0,276984	0,326434	0,265858	0,322297	0,398403	0,546163	0,326640	0,415019	0,428620	0,481688
107	0,292629	0,340087	0,283881	0,337181	0,449403	0,601691	0,360970	0,448761	0,470110	0,529611
108	0,308586	0,353723	0,302276	0,351907	0,507935	0,661565	0,398908	0,485247	0,515620	0,583724
109	0,324829	0,367316	0,320952	0,366381	0,575013	0,725026	0,440834	0,524699	0,565530	0,644553
110	0,341337	0,380841	0,339808	0,380505	0,651328	0,790594	0,487166	0,567359	0,620290	0,712622
111	-	-	-	-	-	-	-	-	-	-
112	-	-	-	-	-	-	-	-	-	-
113	-	-	-	-	-	-	-	-	-	-
114	-	-	-	-	-	-	-	-	-	-
115	-	-	-	-	-	-	-	-	-	-
116	-	-	-	-	-	-	-	-	-	-
117	-	-	-	-	-	-	-	-	-	-
118	-	-	-	-	-	-	-	-	-	-
119	-	-	-	-	-	-	-	-	-	-
120	-	-	-	-	-	-	-	-	-	-

ANEXO B - TABELA DE DISTRIBUIÇÃO DO QUI-QUADRADO

Distribuição do Qui-Quadrado - χ^2_n

Os valores tabelados correspondem aos pontos x tais que: $P(\chi_n^2 \le x)$

							$P(\chi_n^2 \le x)$)						
<u>n</u>	0,005	0,01	0,025	0,05	0,1	0,25	0,5	0,75	0,9	0,95	0,975	0,99	0,995	
1	3,93E-05	0,000157	0,000982	0,003932	0,016	0,102	0,455	1,323	2,706	3,841	5,024	6,635	7,879	1
2	0,010	0,020	0,051	0,103	0,211	0,575	1,386	2,773	4,605	5,991	7,378	9,210	10,597	2
3	0,072	0,115	0,216	0,352	0,584	1,213	2,366	4,108	6,251	7,815	9,348	11,345	12,838	3
4	0,207	0,297	0,484	0,711	1,064	1,923	3,357	5,385	7,779	9,488	11,143	13,277	14,860	4
5	0,412	0,554	0,831	1,145	1,610	2,675	4,351	6,626	9,236	11,070	12,832	15,086	16,750	5
6	0,676	0,872	1,237	1,635	2,204	3,455	5,348	7,841	10,645	12,592	14,449	16,812	18,548	6
7	0,989	1,239	1,690	2,167	2,833	4,255	6,346	9,037	12,017	14,067	16,013	18,475	20,278	7
8	1,344	1,647	2,180	2,733	3,490	5,071	7,344	10,219	13,362	15,507	17,535	20,090	21,955	8
9	1,735	2,088	2,700	3,325	4,168	5,899	8,343	11,389	14,684	16,919	19,023	21,666	23,589	
10	2,156	2,558	3,247	3,940	4,865	6,737	9,342	12,549	15,987	18,307	20,483	23,209	25,188	10
11 12	2,603 3.074	3,053 3,571	3,816 4,404	4,575 5,226	5,578 6,304	7,584	10,341	13,701	17,275 18,549	19,675 21,026	21,920 23,337	24,725 26,217	26,757 28,300	11 12
13						8,438	11,340	14,845						13
14	3,565 4.075	4,107 4,660	5,009 5,629	5,892 6,571	7,041 7,790	9,299	12,340 13,339	15,984 17,117	19,812 21,064	22,362 23.685	24,736 26,119	27,688 29,141	29,819 31,319	14
15	4,601	5,229	6,262	7,261	8,547	10,165 11,037	14,339	18,245	22,307	24,996	27,488	30,578	32,801	15
16	5,142	5,812	6,908	7,261	9,312	11,912	15,338	19,369	23,542	26,296	28,845	32,000	34,267	16
17	5,697	6,408	7,564	8,672	10,085	12,792	16,338	20,489	24,769	27,587	30,191	33,409	35,718	17
18	6,265	7,015	8,231	9,390	10,865	13,675	17,338	21,605	25,989	28,869	31,526	34,805	37,156	18
19	6,844	7,633	8,907	10,117	11,651	14,562	18,338	22,718	27,204	30,144	32,852	36,191	38,582	19
20	7,434	8,260	9,591	10,851	12,443	15,452	19,337	23,828	28,412	31,410	34,170	37,566	39,997	20
21	8.034	8,897	10,283	11,591	13,240	16,344	20,337	24,935	29,615	32,671	35,479	38,932	41,401	21
22	8.643	9,542	10,982	12,338	14,041	17,240	21,337	26,039	30,813	33,924	36,781	40,289	42,796	22
23	9,260	10,196	11,689	13,091	14,848	18,137	22,337	27,141	32,007	35,172	38,076	41,638	44,181	23
24	9.886	10,856	12,401	13,848	15,659	19.037	23,337	28,241	33,196	36,415	39,364	42,980	45,558	24
25	10,520	11,524	13,120	14,611	16,473	19,939	24,337	29,339	34,382	37,652	40,646	44,314	46,928	25
26	11,160	12,198	13,844	15,379	17,292	20,843	25,336	30,435	35,563	38.885	41,923	45,642	48,290	26
27	11.808	12,878	14,573	16,151	18,114	21,749	26,336	31,528	36,741	40,113	43,195	46,963	49,645	27
28	12,461	13,565	15,308	16,928	18,939	22,657	27,336	32,620	37,916	41,337	44,461	48,278	50,994	28
29	13,121	14,256	16,047	17,708	19,768	23,567	28,336	33,711	39,087	42,557	45,722	49,588	52,335	29
30	13,787	14,953	16,791	18,493	20,599	24,478	29,336	34,800	40,256	43,773	46,979	50,892	53,672	30
40	20,707	22,164	24,433	26,509	29,051	33,660	39,335	45,616	51,805	55,758	59,342	63,691	66,766	40
50	27,991	29,707	32,357	34,764	37,689	42,942	49,335	56,334	63,167	67,505	71,420	76,154	79,490	50
60	35,534	37,485	40,482	43,188	46,459	52,294	59,335	66,981	74,397	79,082	83,298	88,379	91,952	60
70	43,275	45,442	48,758	51,739	55,329	61,698	69,334	77,577	85,527	90,531	95,023	100,425	104,215	70
80	51,172	53,540	57,153	60,391	64,278	71,145	79,334	88,130	96,578	101,879	106,629	112,329	116,321	80
90	59,196	61,754	65,647	69,126	73,291	80,625	89,334	98,650	107,565	113,145	118,136	124,116	128,299	90
100	67,328	70,065	74,222	77,929	82,358	90,133	99,334	109,141	118,498	124,342	129,561	135,807	140,170	100

APÊNDICE A - EVENTOS POR IDADE PARA CADA ANO

	Τá	<u> bela 13 -</u>	 Exposto 	s ao risco				análise -	FEMININ	10	
idade(x)	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	TOTAL
2											
3											
4											
5											
6											
7											
8											
9											
10											
11 12											
13											
14											
15											
16											
17											
18											
19											
20 21											
22											
23											
24											
25							_				
26											
27											
28											
29 30											
31											
32											
33											
34									1		1
35								1		1	2
36									1		1
37										1	1
38 39										2	2
40					1	1					2
41					2	2	1			1	6
42					1	1	2			1	5
43					1	1	1	1		1	5
44					2	3		2	1		8
45					3	3	3	1	2	1	13
46					1	1	4	1	2	4	13
47 48					4	4	2	2	3	2	14
48					3	3	4	2	3	3	19 19
50					4	4	3	3	3	4	21
51					12	12	4	6	3	2	39
52					15	17	13	2	6	4	57
53					10	14	17	3	2	7	53
54					29	35	16	20	4	5	109
55					42	47	44	31	16	5	185
56 57					88	96	56	36 59	29 34	19 35	324
58					128 131	149 148	108 158	126	49	42	513 654
59					162	176	172	198	102	76	886
60					189	196	179	194	169	132	1.059
61					238	251	205	185	232	189	1.300
62					225	227	261	224	218	250	1.405
63					243	249	239	283	201	245	1.460
64					299	301	254	244	249	226	1.573
65					270	276	299	276	304	273	1.698
66 67					275	276 285	271 272	296 280	272 295	315 282	1.705
0/	l	<u> </u>	<u> </u>	<u> </u>	286	285	2/2	280	295	282	1.700

Tabela 13 - Expostos ao risco de mortalidade por ano de análise - FEMININO

						alidade po					
idade(x)	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	TOTAL
68					253	246	284	280	322	310	1.695
69					252	257	246	282	279	325	1.641
70					254	250	257	242	273	289	1.565
71					228	222	245	249	286	281	1.511
72					199	195	216	245	246	287	1.388
73					223	224	222	248	255	249	1.421
74					194	188	211	218	276	297	1.384
75					181	170	181	204	243	270	1.249
76					198	189	157	169	209	230	1.152
77					171	163	173	154	194	200	1.055
78					184	175	150	154	158	185	1.006
79					133	124	162	136	140	144	839
80					132	124	112	148	140	134	790
81					120	111	113	102	133	134	713
82					109	100	100	105	143	128	685
83					89	84	91	96	95	135	590
84					82	70	78	81	95	90	496
85					66	59	66	70	84	86	431
86					67	55	45	65	76	77	385
87					44	39	50	40	56	64	293
88					42	36	28	40	54	48	248
89					30	26	29	26	37	50	198
90											
91					22	20	24	23	35	31	155
92					25	20	16	20	19	28	128
					14	11	14	11	18	17	85
93					15	13	7	15	12	16	78
94					7	6	10	9	12	9	53
95					5	2	5	6	9	12	39
96					8	5	2	6	5	6	32
97					1		5	2	5	3	16
98					3	1		2	3	4	13
99					1			2	2	2	7
100					1				3	1	5
101										2	2
102											
103											
104											
105											
106											
107											
108											
109											
110											
111											
112											
113											
114											
115											
116											•
117											
118											
119											
120											

Tabela 14 - Eventos de morte observados por ano de análise - FEMININO

		rabela 14	- Evento	os de mor	te observ	/ados por	ano de a	inalise - i	EMIININO		
idade(x)	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	TOTAL
1											
2		1									
3											
5		+									
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17 18											
19											
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
31 32											
33											
34											
35											
36											
37											
38											
39											
40											
41					1						1
42											
43											
44											
45											
46 47							1				1
48											
49											
50											
51								1		1	2
52					1		1	1			3
53						1					1
54					2	1					3
55					1			1			2
56					2		1		1		4
57					3	1	2	2			8
58		1			1	4	3	_			8
59		-			2	3	3	2	1	1	12
60 61					7	3	7 5	7	3 1	5	22 29
62					6		5	2	1	3	29
63					4	6	6	6	4	1	27
64					4	5	5	3	3	2	22
65					6	8	3	1	7	3	28
66					3	9	10	6	7	7	42
67					10	6	11	6	4	1	38
68					5		9	8	9	8	48
69					12	17	13	7	10	6	65
70					11		6	10	7	7	48
71					9	3	12	11	9	4	48

Tabela 14 - Eventos de morte observados por ano de análise - FEMININO

				os de moi							
idade(x)	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	TOTAL
72					10	11	4	7	11	5	48
73					8	10	20	20	4	10	72
74					14	6	11	15	11	9	66
75					9	4	11	16	10	5	55
76					14	7	14	5	10	10	60
77					15	15	9	11	10	12	72
78					15	8	14	9	9	7	62
79					15	13	18	17	10	15	88
80					8	13	11	15	12	7	66
81					8	10	13	12	9	5	57
82					8	6	14	13	4	5	50
83					9	10	14	16	4	6	59
84					8	9	7	8	5	7	44
85					8	11	11	9	11	7	57
86					6	9	5	8	6	6	40
87					3	10	8	9	10	9	49
88					9	8	13	3	7	11	51
89					8	6	7	4	6	3	34
90					5	4	8	10	3	6	36
91					4	3	10	7	8	5	37
92					5	4	2	6	4	2	23
93					5	5	4	1	5	2	22
94					2	3	5	6	5	2	23
95					5	2	4		1	1	13
96					4	2	2	2	4	2	16
97					4	2	_	-	1	1	8
98					2	4		1	3	3	13
99					2	2		1			5
100					1	1	1	·		2	5
101					1				1		2
102					·	1				1	2
103											_
104											
105											
106											
107		†									
108		1									
109											
110		<u> </u>									
111											
112		<u> </u>									
113											
114											
115											
116											
117		+									
117		1									
119		1									
120											

Tabela 15 – Expostos ao risco de mortalidade por ano de análise - MASCULINO

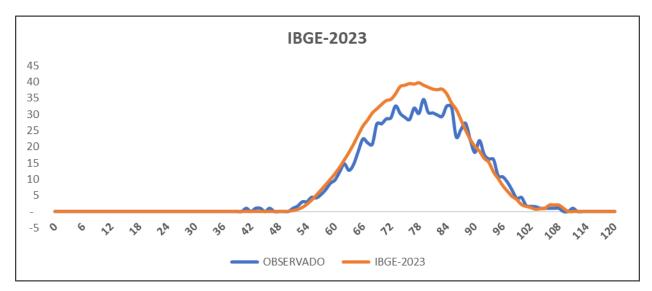
					de morta	lidade po					
idade(x)	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	TOTAL
2			+								
3											
4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19 20			-								
21			1								
22			 								
23											
24											
25											
26											
27											
28											
29											
30											
31											
32											
33										1	1
34											
35											
36					_						_
37 38					2	2					2
39					1	1	3			1	4
40							1	3			4
41					1			3	3		7
42					4	2			3	3	12
43						4	4		1	3	12
44					2	1	4	3		2	12
45						2	1	4	3		10
46					2		3	1	5	4	15
47						2		3	1	4	10
48					1		2		3	2	8
49					19	5		2		3	29
50					50	26	7		2		85
51					124	66	27	7	1	4	229
52 53			 		248	143	81	31	11	5	519
53 54					384 538	278 413	162 303	91 184	34 98	12 39	961
55			 		538 644	569	431	328	202	106	1.575 2.280
56					670	665	588	450	360	234	2.280
57					760	692	683	602	475	376	3.588
58					834	775	701	704	629	490	4.133
59					811	851	791	708	731	651	4.543
60					898	829	872	813	742	753	4.907
61					1011	919	842	884	835	750	5.241
62					1068	1027	926	845	909	849	5.624
63					1080	1066	1041	929	870	923	5.909
64					1081	1084	1068	1055	955	888	6.131
65					1051	1077	1083	1080	1081	956	6.328
66					1115	1052	1080	1081	1090	1090	6.508
67					1011	1113	1048	1079	1097	1104	6.452
68			 		1122	1016	1114	1057	1086	1107	6.502
69 70			-		1022	1110	1011	1114	1055	1086	6.398
70 71			-		1019	1022	1102	1007	1118	1058	6.326
/1			1		915	1015	1008	1098	1009	1122	6.167

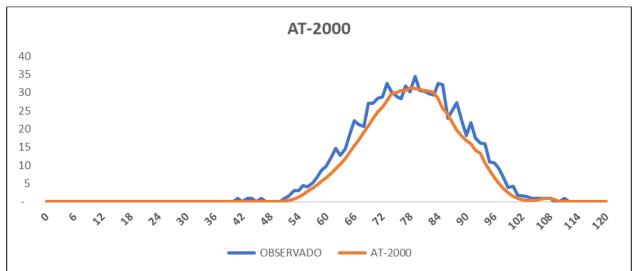
Tabela 15 – Expostos ao risco de mortalidade por ano de análise - MASCULINO

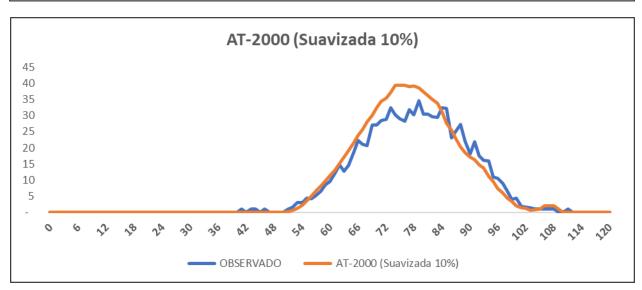
			Expostos ao risco de n								
idade(x)	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	TOTAL
72					836	900	993	1001	1087	1014	5.831
73					818	820	891	986	993	1085	5.593
74					805	800	836	915	1021	1032	5.409
75					649	793	787	824	906	1007	4.966
76					664	642	772	771	810	893	4.552
77					525	656	635	752	758	788	4.114
78					532	512	629	617	739	743	3.772
79					502	519	493	603	604	720	3.441
80					441	494	498	475	581	592	3.081
81					359	425	483	483	450	562	2.762
82					353	339	403	463	463	430	2.451
83					310	339	319	380	438	439	2.225
84					228	297	321	291	363	410	1.910
85					161	218	273	294	279	333	1.558
86					171	150	196	247	279	266	1.309
87					143	163	134	176	219	265	1.100
88					155	126	145	122	160	197	905
89					117	139	116	131	115	151	769
90					118	103	127	101	122	101	672
91					88	107	96	108	89	104	592
92					78	77	95	81	97	79	507
93					59	74	65	78	70	88	434
94					46	47	61	49	62	61	326
95					24	39	45	50	42	52	252
96					20	22	29	33	41	31	176
97					16	15	19	25	24	31	130
98					8	11	10	16	21	18	84
99					9	5	9	7	14	16	60
100					2	5	4	6	3	9	29
101					4	2	3	2	6	2	19
102					1	2	2	2	2	4	13
103					1	2	1	1		1	3
104					1			1	1	1	3
105					1			1			1
106											2
107					2	2					
107		 				2	2				2
108		 	+				2	1			2
110		 						1			1
111											
112											
113		-									
114		-									
115											
116		 	-								
117		 									
118		 	1								
119		-									
120		l .]							

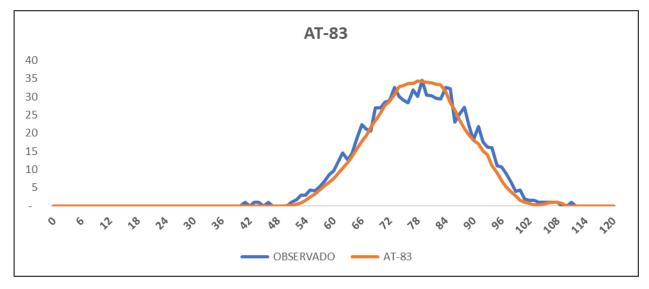
Tabela 16 - Eventos de morte ocorridos por ano de análise - MASCULINO

		rabela ic	- Evento	os de moi 2018	te ocorri	oos por a	no de ana	alise - MA	SCULINO		
idade(x)	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	TOTAL
2											
3											
4											
5											
6 7											
8											
9											
10											
11											
12											
13											
14 15											
16											
17											
18											
19											
20 21		1	1	1							
21											
23											
24											
25											
26											
27 28											
29											
30											
31											
32											
33											
34 35											
36											
37											
38											
39											
40											
41 42											
43					1						1
44								1			1
45											
46					1						1
47											
48 49		1	1	1							
50											
51					1						1
52					1		1		-		2
53		1	1	1	4	3	11_				8
54 55					5	1	3	1 2			9
56					10	7	5	2	2	1	20 21
57					2	7	6	1		2	18
58					9	5	8	5	4	1	32
59					15	10	6	4		5	40
60					11		3	6	5	4	36
61 62					14 15	8 10	6 15	4 11	7 8	5 7	44 66
63					15		7	6	6	5	49
64					18	13	11	11	5	7	65
65					17	15	23	8	9	11	83
66					18	20	16	13	10	15	92
67					22	14	17	19	11	6	89
68 69		-	-	-	22	12	12	11	13	6	76
70					28 27	18 20	19 13	20	12 14	11 20	97 114
71					35		25	18	16	13	114




Tabela 16 - Eventos de morte ocorridos por ano de análise - MASCULINO


					rte ocorrio						
idade(x)	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	TOTAL
72					42	22	20	15	18	8	125
73					26	23	23	17	19	15	123
74					22	24	23	16	9	21	115
75					33	23	16	20	12	15	119
76					30	15	21	20	16	8	110
77					30	14	23	18	16	18	119
78					25	18	24	24	12	16	119
79					32	19	18	20	13	17	119
80					26	18	21	22	20	10	117
81					30	17	22	20	20	16	125
82					21	23	22	22	24	16	128
83					19	21	18	19	21	19	117
84					27	15	28	34	20	27	151
85					22	16	27	22	18	31	136
86					15	11	18	26	11	17	98
87					17	12	24	22	24	3	102
88					17	15	19	19	19	23	112
89					20	23	16	15	14	11	99
90					23	11	12	14	5	8	73
91					14	19	13	21	14	13	94
92					17	11	11	21	10	12	82
93					16	6	19	15	7	12	75
94					21	8	11	18	10	5	73
95					7	10	6	9	11	10	53
96					5	8	4	13	7	11	48
97					5	4	9	10	10	8	46
98					1	4	6	5	3	7	26
99					3	3	2	4	2	5	19
100					1	5	4	3	3	5	21
101						3	1	3	1	1	9
102					2		1		1	2	6
103					1	3	1	2	1	1	9
104								_		1	1
105						1				1	2
106									1	·	1
107						1					1
108							1				1
109							·				•
110											
111									1		1
112											•
113		1									
114											
115											
116											
117		1									
117											
118		1									
		 									
120			l	l]				


APÊNDICE B - GRÁFICOS observados x esperados

